Впускной коллектор с изменяемой геометрией ВАЗ

Здравствуйте, в этой статье мы постараемся ответить на вопрос: «Впускной коллектор с изменяемой геометрией ВАЗ». Если у Вас нет времени на чтение или статья не полностью решает Вашу проблему, можете получить онлайн консультацию квалифицированного юриста в форме ниже.


Установлено, что от скорости воздушного потока зависит степень наполняемости цилиндров топливовоздушной смесью в бензиновых и воздухом — в дизельных двигателях. На разных режимах работы двигателя скорость воздушного потока различна и зависит oт разрежения во впускном коллекторе. Для получения высоких характеристик от двигателя, необходимо обеспечить высокую скорость потока в цилиндры.

Форма и объемная эффективность

Одним из важнейших параметров впускного коллектора, определяющим эффективность, является его форма. Основное правило, которого придерживаются все инженеры, гласит, что впускной коллектор не должен иметь никаких угловатых форм, так как это спровоцирует перепады давления и, как следствие, худшее наполнение цилиндров воздухом или рабочей смесью. Поэтому, все коллекторы имеют сглаженные переходы между сегментами и округлые формы.

В подавляющем большинстве нынешних коллекторов применяют раннеры. Представляют они из себя отдельные трубы, расходящиеся от центрального входа коллектора на все имеющиеся впускные каналы в головке блока цилиндров. Их задача состоит в том, чтобы использовать такое явление, как резонанс Гельмгольца. Принцип работы конструкции выглядит следующим образом.

Системы изменения геометрии впускного коллектора

Поскольку, фиксированная длина впускного коллектора, обеспечивает качественное наполнение цилиндров только в ограниченных диапазонах частот вращений коленчатого вала, более предпочтительным считается впускной коллектор, имеющий систему изменения геометрии. Изменяться может либо его длина, либо диаметр, либо оба параметра.

Применяется на безнаддувных силовых агрегатах, как бензиновых, так и дизельных. Когда мотор работает на низких оборотах, длина коллектора должна быть большой для достижения высокого крутящего момента и приемистости, на высоких – маленькой, чтобы силовой агрегат мог развить максимальную мощность. Для изменения геометрии применяется клапан, входящий в систему управления двигателем. Он переключает коллектор с одной длины на другую.

Работает впускной коллектор переменной длины следующим образом. Когда закрывается впускной клапан, воздух, оставшийся в коллекторе, начинает совершать колебания, частота которых пропорциональна длине самого коллектора и оборотам двигателя. Когда возникает резонанс, появляется эффект нагнетания (резонансный наддув). В результате, воздух подается в открывающиеся впускные клапаны под увеличенным давлением.

В моторах, оснащенных системами наддува, подобный впускной коллектор с изменяемой геометрией не применяется, поскольку нагнетание воздуха в цилиндры происходит принудительно. В таких силовых агрегатах применяются максимально короткие коллекторы, благодаря чему уменьшаются габариты и стоимость производства двигателей.

Система изменения геометрии впускного коллектора, у разных производителей называется по-разному:

  1. BMW называют ее Differential Variable Air Intake (DIVA);
  2. у Ford это Dual-Stage Intake (DSI);
  3. в автомобилях Mazda система носит название Variable Inertia Charging System (VICS), в ряде случаев Variable Resonance Induction System (VRIS).

Причины возникновения ошибки P2004

Наиболее распространенными причинами возникновения ошибки P2004 являются:

  • Неисправность электромагнитного клапана системы изменения геометрии впускного коллектора
  • Короткое замыкание, износ или повреждение электрических проводов, относящихся к электромагнитному клапану системы изменения геометрии впускного коллектора
  • Обрыв электрических проводов, относящихся к электромагнитному клапану системы изменения геометрии впускного коллектора
  • Коррозия соединителя электромагнитного клапана системы изменения геометрии впускного коллектора
  • Ослабление или повреждение винтов воздушной заслонки системы изменения геометрии впускного коллектора
  • Повреждение воздушной заслонки системы изменения геометрии впускного коллектора
  • Засорение вакуумного фильтра электромагнитного клапана управления вакуумом
  • Загрязнение электромагнитного клапана управления вакуумом
  • Отсоединение или повреждение вакуумных трубопроводов
  • Накопление чрезмерного количества углерода на заслонках системы изменения геометрии впускного коллектора
  • Неисправность клапана системы рециркуляции отработавших газов
  • Неисправность датчика массового расхода воздуха
  • Неисправность датчика барометрического давления

Рабочий механизм (пневмокамера) системы изменения длины впускного коллектора

Это самое слабое звено в этой цепи.

Пневмокамера состоит из корпуса (металлического или пластикового), штока, диафрагмы и пружины.

Чаще всего система изменения геометрии впускного коллектора выходит из строя именно из-за изношенной диафрагмы пневмокамеры. Её можно назвать расходным материалом.

Чтобы проверить целостность пружины и диафрагмы, достаточно отсоединить вакуумную трубку и вдавить шток. Шток должен войти без заеданий, а при отпускании – должен резко выдвинуться. Значит пружина цела и ось заслонок не заедает.

Теперь вдавливаем шток и закрываем штуцер пальцем. Шток не должен выходить из пневмокамеры полностью. Если выходит – значит диафрагма порвана.

Какие схемы изменения геометрии применяют производители

В мировой автомобильной промышленности система изменения геометрии впускного коллектора используется многими производителями, которые называют эту технологию своим собственным уникальным названием. Следовательно, конструкции с переменной длиной впускного коллектора можно определить следующим образом:

  • Ford. Название системы — Dual-Stage Intake;
  • BMW. Название системы — Differential Variable Air Intake;
  • Mazda. Название системы — VICS или VRIS.

На каких автомобилях чаще встречается данная проблема

Проблема с кодом P2004 может встречаться на различных машинах, но всегда есть статистика, на каких марках эта ошибка присутствует чаще. Вот список некоторых из них:

  • Audi (Ауди а6, Ауди а8, Ауди q7)
  • BMW
  • Chrysler (Крайслер Себринг)
  • Dodge (Додж Авенджер, Джорней, Калибр)
  • Fiat (Фиат Браво)
  • Ford (Форд Фокус, F-150)
  • Honda
  • Jeep (Джип Компасс, Патриот)
  • Kia
  • Lexus
  • Mazda (Мазда 3, Мазда 6)
  • Mercedes (Мерседес m272, ml350, w164, w203, w211)
  • Nissan (Ниссан Альтима, Роуг, Теана)
  • Skoda (Шкода Октавия)
  • Ssangyong (Саньенг Актион)
  • Subaru
  • Suzuki
  • Volkswagen (Фольксваген Пассат, Туран, Тигуан)
  • Volvo

С кодом неисправности Р2004 иногда можно встретить и другие ошибки. Наиболее часто встречаются следующие: P0202, P2005, P2008, P2017, P2107.

Впускной коллектор ваз 2106

Группа: Жигулёнок
Сообщений: 206
Регистрация: 21.3.2007
Из: Москва, ВАО
Пользователь №: 10
Машина:ВАЗ 21065
Цвет:Белая
Год Выпуска: 1998
Спасибо сказали: 0 раз

Данная работа выполняется для уменьшения числа оборотов, при которых достигается максимальный крутящий момент и увеличения мощности на высоких оборотах.

Самое главное — это сопрячь коллектор (относится как к впускному, так и выпускному) с головкой блока циллиндров. Для этого необходимо покрасить небыстро сохнущей краской (кузбаслаком например) плоскость сопряжения головки и прислонить к ней коллектор. Далее круглым напильником выбрать все светлые места вокруг воздушных каналов на коллекторе. Потом смыть краску с головки и коллектора и повторить процедуру наооборот (красить коллектор, точить головку). Можно ограничиться одним таким циклом, но можно и повторить еще раз для точности. Проверку точности можно выполнить, если покрасить и коллектор и головку и зажать между ними кальку. По отпечатку на просвет можно увидеть все неточности.

С прокладкой бороться сложнее. Напильником ее не доработаешь. Следует воспользоваться бормашинкой или круглым напильником, зажатым в дрели. Прокладка дорабатывается по месту. Металлические вставки в прокладку вокруг выпускных каналов трогать не стоит.

Далее — полировка. Ее имеет смысл делать при переборке двигателя. Для этого с демонтированной головки снимаются клапана, ось коромысел, сами коромысла, распредвал. После чего снимают коллектора, вынимают прокладку и снова их прикручивают.

Теперь два варианта:

Первый — берется тросик толщиной 2 — 3 мм и на него наносится слой грубой абразивной пасты (типа ГОИ) и производят поступательно-вращательные движения внутри одного из каналов (это очень долго, тяжело и скучно). Затем, визуально проверив качество грубой обработки, на тросик плотно наматывается брезент и смазывается пастой ГОИ. Процедура повторяется. Данный метод не гарантирует максимальное качествой по всей внутренней поверхности канала, но гарантирует, что самые критичные части булут обработаны.

Форма и объемная эффективность

Одним из важнейших параметров впускного коллектора, определяющим эффективность, является его форма. Основное правило, которого придерживаются все инженеры, гласит, что впускной коллектор не должен иметь никаких угловатых форм, так как это спровоцирует перепады давления и, как следствие, худшее наполнение цилиндров воздухом или рабочей смесью. Поэтому, все коллекторы имеют сглаженные переходы между сегментами и округлые формы.

В подавляющем большинстве нынешних коллекторов применяют раннеры. Представляют они из себя отдельные трубы, расходящиеся от центрального входа коллектора на все имеющиеся впускные каналы в головке блока цилиндров. Их задача состоит в том, чтобы использовать такое явление, как резонанс Гельмгольца. Принцип работы конструкции выглядит следующим образом.

В момент, когда происходит всасывание, воздух проходит на весьма высокой скорости через открытый впускной клапан. Когда клапан закрывается, воздух, не успевший попасть в цилиндр, сохраняет большой импульс, а значит давит на клапан, в результате чего образуется зона высокого давления. Затем происходит выравнивание давления, с более низким давлением в коллекторе.

Из-за влияния сил инерции, выравнивание происходит с колебаниями: вначале воздух попадает в раннер под давлением более низким, чем в коллекторе, затем под более высоким. Происходит сей процесс со скоростью звука, и до того, как впускной клапан откроется в очередной раз, колебания могут совершаться многократно.

Изменение давления вследствие резонансных колебаний воздуха тем больше, чем меньше диаметр раннера. Когда поршень движется вниз, давление на выходе раннера уменьшается. Затем этот низкий импульс давления доходит до входа коллектора, где превращается в импульс высокого давления, который проходит в обратном направлении через раннер и клапан, после чего клапан закрывается.

Для достижения максимального эффекта от резонанса, впускной клапан должен открываться в строго определенный момент, иначе результат будет обратный. Добиться этого довольно сложно. Газораспределительный механизм является динамическим узлом, и режим его работы находится в самой прямой зависимости от частоты вращения коленвала.

Импульсы синхронизируются статично, синхронизация зависит от длины раннеров. Частично проблема решается тем, что длина подбирается под определенный диапазон оборотов, на которых достигается наибольший крутящий момент. Другой вариант — применение систем изменения геометрии впускного коллектора и электронного управления ГРМ.

Значение длины и формы патрубков приемного коллектора

В последнее время длине и форме патрубков или каналов впускного коллектора придается огромное значение. В конструкции канала недопустимы резкие искривления и острые углы, так как в этих местах топливо, смешанное с воздухом, будет неизбежно оседать на стенках. В современных коллекторах используется принцип, родившийся в недрах мастерских по подготовке спортивных автомобилей — все индивидуальные каналы всех цилиндров, вне зависимости от удаленности от центра, имеют равную длину.Такая конструкция способствует борьбе с так называемым «резонансом Гельмгольца». Поток топливо-воздушной смеси в момент открытия впускного клапана движется по каналу коллектора в сторону цилиндра со значительной скоростью. Когда клапан закрывается, воздух, не успевший пройти в камеру сгорания, продолжает давить на закрытый клапан, создавая область высокого давления. Под его воздействием воздух стремится вернуться назад, в верхнюю часть коллектора. Таким образом, в канале образуется противоток, который прекращается в момент, когда клапан открывается в следующий раз. Процесс смены направления потока в традиционных коллекторах происходит постоянно и на скорости, близкой к сверхзвуковой. Дело в том, что помимо открытия и закрытия клапанов, воздух стремится к постоянной смене направления в соответствии с явлением резонанса, который открыл Герман фон Гельмгольц, автор классических работ по акустике. Естественно, когда воздух непрерывно «болтается туда-сюда» неизбежны потери мощности. Впервые коллекторы, оптимизированные по резонансу Гельмгольца были применены в двигателях Chrysler V10, которыми комплектовались автомобили и пикапы . В дальнейшем конструкцию приняли на вооружение другие производители.

Почему может понадобиться ремонт впускного коллектора?

По своей сути впускной коллектор имеет достаточно сложную конструкцию. Исходя из этих соображений значительно возрастает вероятность поломки или неисправности определенного отдельного элемента всего устройства. Зачастую выходят из строя заслонки (в основном на немецких марках автомобилей).

В данном случае автомобиль очень сильно слабнет и существенно теряет мощность. В тоже время значительно увеличивается расход топлива, а тяга и работа двигателя в целом ухудшаются. Выходят заслонки коллектора по нескольким причинам: низкокачественный материал изготовления этих заслонок, чересчур высокая температура, присутствие масляного конденсата.

Помимо этого может также выйти из строя и клапан управления этими заслонками впускного коллектора. Признаком того, что во впускной коллектор попала консистенция масла, является его увеличенный расход, который может превышать 1 литр на 1 тысячу км.

В деталях, которые изготовлены из пластика, очень часто можно встретить проблему, которая заключается в отсоединении трубки от завихрителя. Это, в свою очередь, порождает возникновение определенного характерного звука во время непосредственного движения: шум и треск в автомобиле. Данная поломка вполне решаема даже собственными руками.

Рекомендуем: Масло для двигателя: разновидности, свойства, характеристики

Помимо этого, может возникать подсос воздуха в самом впускном коллекторе. Эта поломка может отражаться на мощности автомобиля. Но самое главное, что будет присутствовать серьезный шум, который напоминает подсасывание или выдувание.

В автомобильной природе существует специальный датчик, который используется для того, чтобы измерять абсолютное давление во впускном коллектора. Данный датчик, помимо вышеуказанной функции, отвечает за оптимизацию процессов сгорания и образования смеси воздуха и топлива. Если же данный датчик выйдет из строя, то, скорее всего, электронный блок управления начнет свою работу в аварийном режиме.

Принцип действия и особенности формирования потока горючей смеси

Карбюратор или топливные форсунки распыляют топливо в приемную камеру коллекторе. За счет электростатических сил капли топлива немедленно разлетаются по камере и стремятся осесть на стенках коллектора или собраться в более крупные капли в воздухе. Оба действия нежелательны, поскольку приводят к образованию смеси неравномерной плотности. Чем лучше распыляется топливо, тем интенсивнее и полнее оно в дальнейшем сгорает в цилиндрах. Для достижения нужной турбулентности и давления в коллекторе, а следовательно, корректного распыления топлива, внутренние поверхности впускных каналов коллектора и головки блока цилиндров принято оставлять нешлифованными. Поверхность не должна быть слишком грубой, так как может возникнуть излишняя турбулентность, которая приведет к повышению давления и падению мощности двигателя.

Равнодлинный впускной коллектор, разработанный для гоночных автомобилей, стал стандартным атрибутом для двигателя современного легкового автомобиля

Впускной коллектор должен иметь строго определенную длину, емкость и форму. Все эти параметры рассчитываются при разработке силового агрегата. Впускной коллектор заканчивается воздушными каналами, которые направляют потоки воздуха к впускным клапанам мотора. В дизельных двигателях и системах с прямым впрыском, воздушный поток завихряется и направляется в цилиндр, в котором и происходит смешивание с топливом.

( 1 оценка, среднее 4 из 5 )

Виды впускных коллекторов

Существуют такие виды впускных коллекторов:

  • стальные;
  • алюминиевые;
  • пластиковые;
  • с изменяемой геометрией;
  • с клапанами контроля выхлопных газов (EGR);
  • с турбонаддувом;
  • с точечным впрыском топлива и др.

На современных двигателях довольно широко распространены коллекторы с точечным впрыском топлива. В такой модификации топливо подается при помощи электромагнитных форсунок, установленных в каждой из его труб-каналов.

Принципиальная схема впускного коллектора с точечным впрыском топлива

Впускной коллектор, как и двигатель в целом, продуктивно работает в определенном диапазоне оборотов. Устройство и тип установленного коллектора зависит от компоновки блока цилиндров, от целевой направленности двигателя и от конструктивных решений в целом.

Читайте также:  Вред здоровью при ДТП: определение и возмещение

Все выше перечисленные коллекторы, делятся на две группы:

  • одноплоскостные;
  • двухплоскостные.

Одноплоскостной коллектор подает топливовоздушную смесь через один общий канал, многоплоскостной же изначально делит поток смеси на два потока.

Для максимальной точности замеры проводились в один день. Сначала на штатном ресивере, затем его заменили на 21179 ресивер, и снова на тесты. Результаты испытаний представлены на графике (черный – ресивер 21126; красный – ресивер 21179):

Ни Цикловое наполнение (ЦН), ни Массовый расход воздуха (МРВ) особо не изменились. ЦН только сместилось немного к верхам (4500-7000 обмин), и это логично, потому что по сравнению со штатным ресивером, каналы у ресивера 21179 получаются немного короче (460 мгц на 4600 обмин и 5200 обмин соответственно). Владелец считает, что низы (ХХ-2500 обмин) и середина (2500-4500 обмин.) остались такими же, и по графику, и по ощущениям. А вот на верхах машина едет более уверенно.

Спортивный ресивер. Дышите – не дышите.

Ссылки по теме:

Параметры впускного тракта оказывают ог­ромное влияние на характер изменения мощности и крутящего момента. за счет наибо­лее правильного опре­деления размера трубо­провода и настройки впуска можно добиться оптимального наполне­ния цилиндров, чем, к примеру, путем совер­шенствования изгибов трубопровода системы выпуска

Наверное, глупо было бы полно­стью модернизировать систему выпуска и напрочь забыть о впус­ке. Ведь установленный нами задолго до этого фильтр понижен­ного сопротивления полно­стью не решил эту проблему. Вывод один: поменяли выпускную систему – надо модернизировать впуск – установить спортивный ресивер, иначе нестыковочка получается. Автомобиль не дышит полной грудью, это ощущение обострилось после установки прямоточного выхлопа. Создается впечатление, что двигатель беспробудно болен хроническим гайморитом. Капли в нос не помогут, нужен качественный ингаля­тор. Спортивный ресивер был разработан и омологирован исключительно для спорта, а в дальнейшем стал применяться и на стан­дартных аппаратах. В отличие от стандарта «дудки» патрубков, примыкающих непосред­ственно к «банке», имеют короткие большие каналы, ощутимо расширяю­щиеся при входе в огромный полый «цилиндр» впускного коллектора. Ведь необходи­мым итогом данной имплантации является увеличение количества воздуха, подаваемо­го в цилиндры. После дросселя воздух поступает в ресивер, объем которого суще­ственно превышает серийный, и уже оттуда распределяется по цилиндрам через увеличенные впускные патрубки определенной длинны, которые в свою очередь изменяют направление потока воздуха на 90 градусов. Больший, чем у стандартного объем, позволяет сгладить пульсации воздуха (ведь каждый цилиндр лишь один раз их четырех находится на такте впуска), а также в такой геометрии длина впускного тракта гораздо короче, что позволяет получить дополнительный момент на средних и высоких оборотах. Спортивный ресивер существенно улучшает динамику разгона на средних и особенно высоких оборотах, с ним до 7000 оборотов в минуту двигатель раскручивается довольно быстро и с огромным удовольствием. Стандартный мотор с заводским ресивером после 5000 об/мин мотор буквально «умирает» от нехватки воздуха. Дави – не дави на педаль акселератора – результат нулевой. С установленным спортивным ресивером, он с готовностью откликается на утопленную в пол педаль газа, он «дышит». Ма­шина реально едет. Не зря все-таки врачи прописывают захворавшим пациентам ингаляции.

ВАЗ 2112. двигатель 1500 16V. Из нестандартной комплектации только: 1. Ресивер Спорт. 2. Воздушный фильтр нулевого сопротивления с торцевым забором воздуха JR. 3. Измененная программа ЭБУ (чип-тюнинг).

Максимальная мощность 114,3 л.с./84,1 kw. при 6490 об/мин. Крутящий момент 134,5 Nm. при 5520 об/мин.

Обратите, пожалуйста внимание на ровную, горизонтальную характеристику крутящего момента с 3200 до 6200об/мин.

ВАЗ 2112. Спортивный ресивер Спортивный ресивер для 16V ГБЦ Спортивный ресивер для 16V ГБЦ

Почему может понадобиться ремонт впускного коллектора?

По своей сути впускной коллектор имеет достаточно сложную конструкцию. Исходя из этих соображений значительно возрастает вероятность поломки или неисправности определенного отдельного элемента всего устройства. Зачастую выходят из строя заслонки (в основном на немецких марках автомобилей).

В данном случае автомобиль очень сильно слабнет и существенно теряет мощность. В тоже время значительно увеличивается расход топлива, а тяга и работа двигателя в целом ухудшаются. Выходят заслонки коллектора по нескольким причинам: низкокачественный материал изготовления этих заслонок, чересчур высокая температура, присутствие масляного конденсата.

Помимо этого может также выйти из строя и клапан управления этими заслонками впускного коллектора. Признаком того, что во впускной коллектор попала консистенция масла, является его увеличенный расход, который может превышать 1 литр на 1 тысячу км.

В деталях, которые изготовлены из пластика, очень часто можно встретить проблему, которая заключается в отсоединении трубки от завихрителя. Это, в свою очередь, порождает возникновение определенного характерного звука во время непосредственного движения: шум и треск в автомобиле. Данная поломка вполне решаема даже собственными руками.


Похожие записи:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *